Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 72(2): 392-403, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35820779

RESUMO

OBJECTIVE: Clinical diagnosis and approval of new medications for non-alcoholic steatohepatitis (NASH) require invasive liver biopsies. The aim of our study was to identify non-invasive biomarkers of NASH and/or liver fibrosis. DESIGN: This multicentre study includes 250 patients (discovery cohort, n=100 subjects (Bariatric Surgery Versus Non-alcoholic Steato-hepatitis - BRAVES trial); validation cohort, n=150 (Liquid Biopsy for NASH and Liver Fibrosis - LIBRA trial)) with histologically proven non-alcoholic fatty liver (NAFL) or NASH with or without fibrosis. Proteomics was performed in monocytes and hepatic stellate cells (HSCs) with iTRAQ-nano- Liquid Chromatography - Mass Spectrometry/Mass Spectrometry (LC-MS/MS), while flow cytometry measured perilipin-2 (PLIN2) and RAB14 in peripheral blood CD14+CD16- monocytes. Neural network classifiers were used to predict presence/absence of NASH and NASH stages. Logistic bootstrap-based regression was used to measure the accuracy of predicting liver fibrosis. RESULTS: The algorithm for NASH using PLIN2 mean florescence intensity (MFI) combined with waist circumference, triglyceride, alanine aminotransferase (ALT) and presence/absence of diabetes as covariates had an accuracy of 93% in the discovery cohort and of 92% in the validation cohort. Sensitivity and specificity were 95% and 90% in the discovery cohort and 88% and 100% in the validation cohort, respectively.The area under the receiver operating characteristic (AUROC) for NAS level prediction ranged from 83.7% (CI 75.6% to 91.8%) in the discovery cohort to 97.8% (CI 95.8% to 99.8%) in the validation cohort.The algorithm including RAB14 MFI, age, waist circumference, high-density lipoprotein cholesterol, plasma glucose and ALT levels as covariates to predict the presence of liver fibrosis yielded an AUROC of 95.9% (CI 87.9% to 100%) in the discovery cohort and 99.3% (CI 98.1% to 100%) in the validation cohort, respectively. Accuracy was 99.25%, sensitivity 100% and specificity 95.8% in the discovery cohort and 97.6%, 99% and 89.6% in the validation cohort. This novel biomarker was superior to currently used FIB4, non-alcoholic fatty liver disease fibrosis score and aspartate aminotransferase (AST)-to-platelet ratio and was comparable to ultrasound two-dimensional shear wave elastography. CONCLUSIONS: The proposed novel liquid biopsy is accurate, sensitive and specific in diagnosing the presence and severity of NASH or liver fibrosis and is more reliable than currently used biomarkers. CLINICAL TRIALS: Discovery multicentre cohort: Bariatric Surgery versus Non-Alcoholic Steatohepatitis, BRAVES, ClinicalTrials.gov identifier: NCT03524365.Validation multicentre cohort: Liquid Biopsy for NASH and Fibrosis, LIBRA, ClinicalTrials.gov identifier: NCT04677101.


Assuntos
Biópsia Líquida , Cirrose Hepática , Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Biomarcadores , Cromatografia Líquida , Fígado/patologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas rab de Ligação ao GTP , Espectrometria de Massas em Tandem
2.
Gut ; 70(6): 1098-1109, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32994312

RESUMO

OBJECTIVE: To assess the role of jejunum in insulin resistance in humans and in experimental animals. DESIGN: Twenty-four subjects undergoing biliopancreatic diversion (BPD) or Roux-en-Y gastric bypass (RYGB) were enrolled. Insulin sensitivity was measured at baseline and at 1 week after surgery using oral glucose minimal model.We excluded the jejunum from intestinal continuity in pigs and created a jejunal loop with its vascular and nerve supply intact accessible from two cutaneous stomas, and reconnected the bowel with an end-to-end anastomosis. Glucose stable isotopes were given in the stomach or in the jejunal loop.In vitro studies using primary porcine and human hepatocytes or myoblasts tested the effects of plasma on gluconeogenesis or glucose uptake and insulin signalling. RESULTS: Whole-body insulin sensitivity (SI∙104: 0.54±0.12 before vs 0.82±0.11 after BPD, p=0.024 and 0.41±0.09 before vs 0.65±0.09/pM/min after RYGB, p=not significant) and Glucose Disposition Index increased only after BPD. In pigs, insulin sensitivity was significantly lower when glucose was administered in the jejunal loop than in the stomach (glucose rate of disappearance (Rd) area under the curve (AUC)/insulin AUC∙10: 1.82±0.31 vs 2.96±0.33 mmol/pM/min, p=0.0017).Metabolomics showed a similar pattern before surgery and during jejunal-loop stimulation, pointing to a higher expression of gluconeogenetic substrates, a metabolic signature of impaired insulin sensitivity.A greater hepatocyte phosphoenolpyruvate-carboxykinase and glucose-6-phosphatase gene expression was elicited with plasma from porcine jejunal loop or before surgery compared with plasma from jejunectomy in pigs or jejunal bypass in humans.Stimulation of myoblasts with plasma from porcine jejunal loop or before surgery reduced glucose uptake, Ser473-Akt phosphorylation and GLUT4 expression compared with plasma obtained during gastric glucose administration after jejunectomy in pigs or after jejunal bypass in humans. CONCLUSION: Proximal gut plays a crucial role in controlling insulin sensitivity through a distinctive metabolic signature involving hepatic gluconeogenesis and muscle insulin resistance. Bypassing the jejunum is beneficial in terms of insulin-mediated glucose disposal in obesity. TRIAL REGISTRATION NUMBER: NCT03111953.


Assuntos
Glucose/metabolismo , Resistência à Insulina , Insulina/metabolismo , Jejuno/metabolismo , Adulto , Animais , Área Sob a Curva , Desvio Biliopancreático , Glicemia/metabolismo , Peptídeo C/sangue , Células Cultivadas , Derivação Gástrica , Peptídeo 1 Semelhante ao Glucagon/sangue , Gluconeogênese , Teste de Tolerância a Glucose , Hepatócitos , Humanos , Fígado/metabolismo , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Mioblastos , Obesidade/cirurgia , Fosforilação , Plasma , Período Pós-Operatório , Período Pré-Operatório , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos
3.
Am J Physiol Gastrointest Liver Physiol ; 319(4): G502-G511, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32812775

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver-related mortality. NAFLD is associated with obesity, hepatic fat accumulation, and insulin resistance, all of which contribute to its pathophysiology. Weight-loss is the main therapy for NAFLD, and metabolic surgery is the most effective treatment for morbid obesity and its metabolic comorbidities. Although has been reported that Roux-en-Y gastric bypass can reverse NAFLD, it is unclear whether such effects result from reduced weight, from a lower calorie-intake, or from the direct influence of surgery on mechanisms contributing to NAFLD. We aimed to investigate whether gastrointestinal (GI) bypass surgery could induce direct effects on hepatic fat accumulation and insulin resistance, independently of weight reduction. Twenty Wistar rats on a high-fat diet underwent duodenal-jejunal-bypass (DJB) or sham operation and were pair fed (PF) for 15 wk after surgery to obtain a matched weight. Outcome measures include ectopic fat deposition, expression of genes and proteins involved in fat metabolism, insulin-signaling, and gluconeogenesis in liver and muscle. Despite no differences in body weight and calorie intake, DJB showed lower ectopic fat accumulation, improved peripheral and hepatic insulin sensitivity, and enhanced lipid droplet degradation. In both tissues, DJB increased insulin signaling, whereas hepatic key enzymes involved in gluconeogenesis and de novo lipogenesis were decreased. These findings suggest that DJB can reverse, independently of weight loss, ectopic fat deposition and insulin resistance, two features of NAFLD that share a mutual pathway, in which perilipin-2 (PLIN2) seems to be the main player, supporting further investigation into strategies that target the gut to treat metabolic liver diseases.NEW & NOTEWORTHY Our findings suggest that duodenal-jejunal bypass can reverse, independently of weight loss, ectopic fat deposition and insulin resistance, two features of nonalcoholic fatty liver disease that share a mutual pathway, in which perilipin-2 seems to be the main player. Our study supports further investigation into the role of proximal small intestine exclusion in the pathophysiology of nonalcoholic fatty liver disease to uncover less invasive treatments that mimic the effects of metabolic surgery and aims to prevent and treat metabolic liver disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Hepatopatia Gordurosa não Alcoólica/cirurgia , Obesidade/complicações , Redução de Peso , Animais , Duodeno , Ingestão de Energia/fisiologia , Feminino , Gluconeogênese , Jejuno , Metabolismo dos Lipídeos/fisiologia , Lipogênese , Fígado/fisiopatologia , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/etiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...